

GEODESIA GLOBAL DAS NAÇÕES UNIDAS CENTRO DE EXCELÊNCIA

MODERNIZAÇÃO DO SISTEMA DE REFERÊNCIA
GEOESPACIAL
OFICINA DE DESENVOLVIMENTO DE CAPACIDADES

EXEMPLO: Criando parâmetros de transformação

Nicholas Brown Chefe do Gabinete, UN-GGCE

Dia 3, Sessão 1 [3_1_2]

Agradecimentos: John Dawson (AUS); Guorong Hu (AUS).

O repositório de dados das Ilhas Fiji é o WGS72.

A Comissão de Geociências Aplicadas das Ilhas do Pacífico (SOPAC) solicitou à Geoscience Australia que calculasse as coordenadas do Sistema de Referência Terrestre Internacional (ITRF) para 18 locais de levantamento nas ilhas do arquipélago norte de Fiji a partir de medições geodésicas contínuas do Sistema de Posicionamento Global (GPS) observadas de 8 de julho a 5 de agosto de 2008, inclusive.

Estas coordenadas fornecem o sistema de referência de coordenadas a ser utilizado para definir a reivindicação das Ilhas Fiji relativamente à plataforma continental alargada, nos termos do disposto no artigo 76.º da Convenção das Nações Unidas sobre o Direito do Mar.

1. Observe o GNSS nas marcas nas quais as coordenadas WGS72 estão disponíveis.

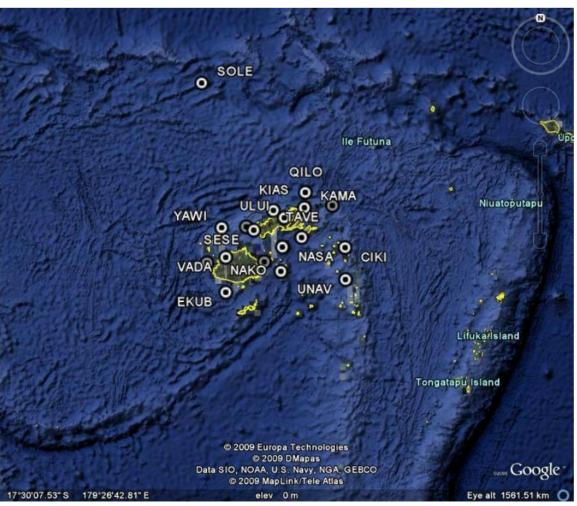


Figure 1: The distribution of the stations of the 2008 Northern Fiji Islands GPS campaign.

- 18 estações
- Observações de frequência dupla
- 28 dias consecutivos

Eye alt 1581.51 km Da VV SOTT E TTU

Dawson e Hu (AUS)

MAIS

HIMTOC

2. Processar dados GNSS para calcular coordenadas ITRF2005@2008

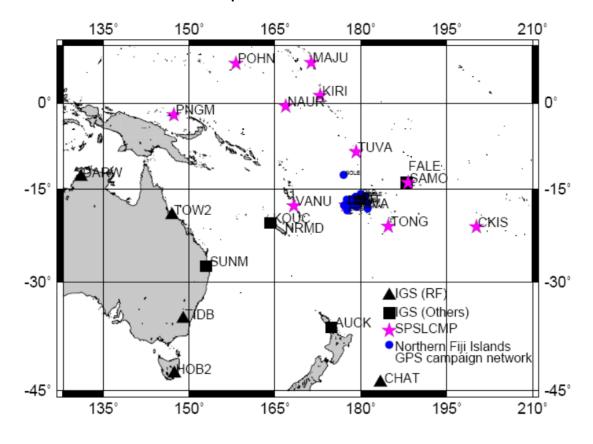


Figure 2: The SPSLCMP/IGS stations included in the GPS data processing.

Dawson e Hu (AUS)

- Incluídas 5 estações IGS da área circundante no processamento (para alinhar/restringir ao ITRF)
- Também foram incluídos locais de referência regionais das Ilhas do Pacífico para "ajudar na resolução de ambiguidades e reduzir os comprimentos de linha de base entre as estações IGS acima mencionadas e as estações da campanha de Fiji".

WGS72

SITE	X (m)	Y (m)	Z (m)
CIKI	-6090790.884	-128354.367	-1882866.878
EKUB	-6045005.524	248397.533	-2012568.398
KADV	-6025612.829	211678.930	-2075994.466
KAMA	-6128128.427	-876.912	-1763105.787
KIAS	-6125126.204	96614.615	-1770429.211
MATU	-6026782.025	26320.369	-2081724.597
NAKO	-6069393.337	74317.387	-1952868.080
ODRI	-6023321.140	-167612.926	-2084345.816
ONOI	-5969814.367	-131365.080	-2234500.378
SAIL	-6108964.587	182329.478	-1818369.130
SESE	-6106871.289	158749.826	-1828962.411
SOLE	-6219742.471	324299.487	-1371185.634
TAVE	-6101703.123	8543.670	-1852334.121
UNAV	-6060199.677	-129057.382	-1978129.289
VADA	-6078939.965	247719.845	-1908646.928
VATO	-5999583.742	-183087.633	-2149906.544

ITRF2005@2008

SITE	X (m)	Y (m)	Z (m)
CEVA	-5901432.3013	554458.5449	-2347334.7909
CIKI	-6090792.0436	-128369.4471	-1882863.3918
EKUB	-6045006.4702	248381.1969	-2012567.0641
KADV	-6025613.9456	211663.5349	-2075992.0838
KAMA	-6128129.1449	-891.7874	-1763104.8897
KIAS	-6125127.8089	96598.2963	-1770426.0192
LAUT	-6075194.5732	270923.9137	-1917189.4371
MAJU	-6257572.3044	950332.6831	785215.2375
MANF	-6071340.2395	307355.4745	-1923860.4408
MATU	-6026782.9119	26305.2446	-2081722.4555
NAKO	-6069393.3645	74300.7507	-1952865.8078
NASA	-6092446.1776	69059.2460	-1880371.3209
NAUR	-6212555.1027	1442786.8956	-61006.6725
ODRI	-6023324.3914	-167626.9300	-2084343.2937
ONOI	-5969817.8125	-131380.5993	-2234496.5488
OVAL	-6078392.5714	126360.6143	-1923939.7659
QELE	-6129224.7546	-89303.1288	-1756463.9017
QILO	-6141289.6922	-4172.9920	-1717003.0966
SAIL	-6106871.9025	158732.3759	-1828960.5555
SESE	-6108966.7088	182311.7462	-1818366.9382
SOLE	-6219743.2094	324285.6012	-1371182.6871
SUVA	-6060677.2218	166617.2074	-1973761.3461
TAVE	-6101703.0397	8527.7474	-1852331.7513
TUCO	-5955264.9601	-129584.0062	-2272571.3656
TURA	-5954650.3967	-119772.0561	-2274702.3597
ULUI	-6119100.7845	62728.2252	-1792699.4820
UNAV	-6060202.2155	-129071.4774	-1978127.1784
VADA	-6078942.2205	247703.3363	-1908644.9425
VATO	-5999585.5068	-183103.6074	-2149904.6272
YAWI	-6105774.5980	260113.9199	-1819818.9082

$$\begin{bmatrix} X_{ITRF05} \\ Y_{ITRF05} \\ Z_{ITRF05} \end{bmatrix} = \begin{bmatrix} T_X \\ T_Y \\ T_Z \end{bmatrix} + (1+S) \times \begin{bmatrix} 1 & R_Z & -R_Y \\ -R_Z & 1 & R_X \\ R_Y & -R_X & 1 \end{bmatrix} \begin{bmatrix} X_{WGS72} \\ Y_{WGS72} \\ Z_{WGS72} \end{bmatrix}$$

(XITRF05, YITRF05, ZITRF05)

(Xwgs72, Ywgs72, Zwgs72)

 (T_X, T_Y, T_Z)

(RX, RY, RZ)

S

are the transformed Cartesian coordinates (m) consistent with the ITRF05@2008.0 coordinates listed in this report.

are the Cartesian Fiji WGS72 geodetic datum coordinates (m).

are the coordinate origin translation parameters (m).

are the coordinate axis rotations (radians).

is the scale change between both coordinate systems.

- É necessário ter pelo menos 3 pontos em comum; mas quanto mais pontos tiverem, melhor.
- Os parâmetros de transformação são calculados utilizando um processo de ajuste por mínimos quadrados.
- Parâmetros de tradução (*Tx,Ty,Tz*):
 - Calcule a diferença média entre as coordenadas correspondentes do Repositório de Dados 1 e do Repositório de Dados 2 para obter os valores iniciais de tradução.
- Fator de dimensionamento (s):
 - Estime a mudança de escala como a razão entre as distâncias entre os pontos no Repositório de Dados 2 e no Repositório de Dados 1.
- Parâmetros de rotação (Rx,Ry,Rz):
 - Calcule os ângulos de rotação que melhor alinham o Repositório de dados 1 com o Repositório de dados 2. Isso envolve resolver a matriz de rotação usando uma forma linearizada das equações de transformação.

Resolva o sistema linearizado

- Estabeleça um sistema de equações:
- $\Delta = A \cdot P$
 - Δ: As diferenças entre as coordenadas observadas e transformadas.
 - A: A matriz de projeto (baseada nas derivadas parciais das equações de transformação).
 - P: Os parâmetros desconhecidos (Tx,Ty,Tz,Rx,Ry,Rz,s).

Refinar iterativamente os parâmetros

- Resolva para P usando operações matriciais (por exemplo, $P=(A^TA)^{-1}A^T\Delta$
- Aplique os parâmetros estimados aos dados de entrada.
- Refinar as estimativas até que os resíduos sejam minimizados.

Verifique a transformação

- Use os parâmetros calculados para transformar as coordenadas originais.
- Compare as coordenadas transformadas com o datum de referência para garantir a precisão.
- Isso pode ser feito no software de combinação GNSS (por exemplo, CATREF), software proprietário... ou com a ajuda IA. MAIS

WGS72

ITRF2005@2008

XYZ

XYZ

-6090790.9 -128354.37 -1882866.9 -6090792 -128369.45 -1882863.4 -6045005.5 248397.533 -2012568.4 -6045006.5 248381.197 -2012567.1 -6025612.8 211678.93 -2075994.5 -6025613.9 211663.535 -2075992.1 -6128128.4 -876.912 -1763105.8 -6128129.1 -891.7874 -1763104.9 -6125126.2 96614.615 -1770429.2 -6125127.8 96598.2963 -1770426 -6026782 26320.369 -2081724.6 -6026782.9 26305.2446 -2081722.5 -6069393.3 74317.387 -1952868.1 -6069393.4 74300.7507 -1952865.8 -6023321.1 -167612.93 -2084345.8 -6023324.4 -167626.93 -2084343.3 -5969814.4 -131365.08 -2234500.4 -5969817.8 -131380.6 -2234496.5 -6108964.6 182329.478 -1818369.1 -6108966.7 182311.746 -1818366.9 -6106871.3 158749.826 -1828962.4 -6106871.9 158732.376 -1828960.6 -6219742.5 324299.487 -1371185.6 -6219743.2 324285.601 -1371182.7 -6101703.1 8543.67 -1852334.1 -6101703 8527.7474 -1852331.8 -6060199.7 -129057.38 -1978129.3 -6060202.2 -129071.48 -1978127.2 -6078940 247719.845 -1908646.9 -6078942.2 247703.336 -1908644.9 -5999583.7 -183087.63 -2149906.5 -5999585.5 -183103.61 -2149904.6

MAIS
FORTES.

Resultados IA

Traduções (metros):

$$Tx = -6,9344$$

$$Ty = -21,2037$$

$$Tz = -10,4443$$

Rotações (segundos de arco):

$$Rx = -0.1225$$

$$Ry = 0.3425$$

$$Rz = -0.2289$$

Resíduos RMSE do ChatGPT

X: 0,887 m

Y: 1,038 m

Z: 0,745 m

Resultados de Dawson

e Hu

Traduções (metros):

$$Tx = -7,0295$$

$$Tz = -10,1505$$

Fator de dimensionamento(sem unidade): de dimensionamento(sem unidade):

Rotações (segundos de arco):

$$Rx = -0.1139$$

$$Ry = +0.3325$$

$$Rz = -0.2573$$

Resíduos RMSE de Dawson e Hu

X: 0,983 m

Y: 0,863 m

Z: 0,808 m

Código Python

```
importar numpy como np
def calcular parâmetros de transformação(Repositório de Dados1, Repositório de Dados2):
 Calcule os parâmetros de transformação de 7 parâmetros usando mínimos quadrados.
 Parâmetros
 - Repositório de Dados1: matriz numpy de forma (n, 3), coordenadas no primeiro repositório de Dados
 - Repositório de Dados2: matriz numpy de forma (n, 3), coordenadas no segundo repositório de Dados
 Retornos:
 - parâmetros: dicionário contendo fatores de tradução, rotação e escala
 # Certifique-se de que os dados estejam no formato de matriz numpy
 Repositório de Dados1 = np.array(Repositório de Dados1)
 Repositório de Dados2 = matriz numérica np.array(Repositório de Dados2)
 # Calcular centróides
 centroide1 = np.mean(Repositório de Dados1, eixo=0)
 centroide2 = np.mean(Repositório de Dados2, eixo=0)
 # Centralizar as coordenadas
 centrado1 = repositório de dados1 - centroide1
 centrado2 = repositório de dados2 - centroide2
 # Fator de dimensionamento (s)
 escala = np.sqrt(np.sum(centrado2**2) / np.sum(centrado1**2))
 # Calcule a matriz de rotação usando a decomposição em valores singulares (SVD)
 H = np.dot(centrado2.T, centrado1)
 U, _, Vt = np.linalg.svd(H)
 matriz rotação = np.dot(U, Vt)
 # Vetor de tradução (Tx, Ty, Tz)
 tradução = centroide2 - escala * np.dot(matriz_de_rotação, centroide1)
 # Extrair ângulos de rotação (em radianos)
 ângulos de rotação = {
   'Rx': np.arctan2(matriz_rotação[2, 1], matriz_rotação[2, 2]),
   'Ry': np.arctan2(-matriz_rotação[2, 0], np.sqrt(matriz_rotação[2, 1]**2 + matriz_rotação[2, 2]**2)),
    'Rz': np.arctan2(matriz_rotação[1, 0], matriz_rotação[0, 0])
```

```
# Parâmetros de retorno
  retorno {
    'Tradução': tradução,
    'Rotação (radianos)': ângulos de rotação,
    'Fator de escala': escala
# Exemplo de uso:
# Substitua `datum1 coords` e `datum2 coords` pelos seus dados reais
datum1_coords = [
  [-6090790,884, -128354,367, -1882866,878],
  [-6045005,524, 248397,533, -2012568,398],
  # Adicione mais pontos conforme necessário
datum2_coords = [
  [-6090792,0436, -128369,4471, -1882863,3918],
  [-6045006,4702, 248381,1969, -2012567,0641],
  # Adicione mais pontos conforme necessário
# Calcular os parâmetros de transformação
parâmetros = calcular parâmetros de transformação(coordenadas repositórios de dados1, coordenadas repositórios c
# Exibir resultados
imprimir("Parâmetros de tradução (Tx, Ty, Tz):", parâmetros['Tradução'])
imprimir("Ângulos de rotação (Rx, Ry, Rz) em radianos:", parâmetros['Rotação (radianos)'])
imprimir("Fator de escala:", parâmetros['Fator de escala'])
```

- Substitua os dados provisórios (repositórios de dados1_coords e repositórios de dados2_coords) pelas coordenadas reais dos dois repositórios de dados.
- A função calculará a translação, a rotação (em radianos) e o fator de escala.

Discussão

- O que você deve considerar antes de usar IA?
- Como você poderia validar o método?
- A quem você poderia pedir ajuda?
- Como lidar com dados geodésicos antigos (por exemplo, sem alturas elipsoidais)

